Identification of Gifted Students from Diverse Backgrounds

Frank C. Worrell
University of California, Berkeley
frankc@berkeley.edu
Overview

• The Backdrop for This Conversation: Excellence Gap
• A Simple Definition of Giftedness
• A More Complicated View of Giftedness
• Some Best Practices
• Questions and Discussion
Gifted Education Statistics

- Af Ams
- As Ams
- Eu Ams
- Hisp Ams

[Bar chart showing the comparison between School Pop and GATE Pop for different groups (Af Ams, As Ams, Eu Ams, Hisp Ams).]
School, GATE, and Advanced %

- African Am
- Asian Am
- European Am
- Hispanic

Bar chart showing the percentage for School, GATE, Adv Read 4, and Adv Math 4 for each ethnic group.
Giftedness = Superior Performance Relative to Peers
Giftedness = Superior Performance Relative to Peers

Figure 2: Normal Curve

- Standard Deviations: -3, -2, -1, 0, 1, 2, 3
- Percentiles: <1st, 2nd, 16th, 50th, 84th, 98th, >99th
 - 68% between -1 and 1
 - 95% between -2 and 2
 - >99% between -3 and 3

The graph illustrates the distribution of performance relative to peers, highlighting the significance of giftedness as superior performance.
Giftedness is....

- The result of multiple factors
- The outcome of a **process** that involves several components:
 - Ability and talents
 - Creativity
 - Opportunities (to develop talent)
 - Effective teaching/mentoring/coaching
 - Psychosocial factors: motivation, task commitment, hard work, grit
 - Time
Implications for Identification

- Context matters.
 - While adult gifted performance is judged against the same standard, the performance of children must be judged in the contexts in which they exist.

- Ability is important but it is not sufficient.

- What are the individual talents of students: math, writing?

- What opportunities have students had to develop their talents?

- Which students are showing creativity, task commitment?
This Distribution Represents the Entire U.S. Population

Figure 2: Normal Curve

Standard Deviations: -3, -2, -1, 0, 1, 2, 3

Percentiles: <1st, 2nd, 16th, 50th, 84th, 98th, >99th

- 68% within 1 standard deviation
- 95% within 2 standard deviations
- More than 99% within 3 standard deviations
Giftedness = Superior Performance Relative to Peers
Giftedness = Superior Performance Relative to Peers
Giftedness = Superior Performance Relative to Peers

Figure 2: Normal Curve

<table>
<thead>
<tr>
<th>Standard Deviations</th>
<th>Percentiles</th>
</tr>
</thead>
<tbody>
<tr>
<td>-3</td>
<td><1st</td>
</tr>
<tr>
<td>-2</td>
<td>2nd</td>
</tr>
<tr>
<td>-1</td>
<td>16th</td>
</tr>
<tr>
<td>0</td>
<td>50th</td>
</tr>
<tr>
<td>1</td>
<td>84th</td>
</tr>
<tr>
<td>2</td>
<td>98th</td>
</tr>
<tr>
<td>3</td>
<td>>99th</td>
</tr>
</tbody>
</table>

-68% of the population falls between -1 and 1 standard deviations from the mean.
-95% of the population falls between -2 and 2 standard deviations from the mean.
-99% of the population falls between -3 and 3 standard deviations from the mean.
Giftedness = Superior Performance Relative to Peers
Questions to Ask

1. What is the goal of the program (e.g., acceleration, enrichment)?
2. What domains are you targeting (e.g., math, reading)?
3. Is the level of exposure to domain likely to vary widely among students?
4. Will curriculum allow all students to see individuals like themselves?
5. Will the program be sensitive to perceived belonging?
Some Best Practices

- Use local norms:
 - Allow all schools to provide “gifted education” to their top students.

- Use multiple indicators to identify broadly:
 - Ability, academic performance; task commitment.

- Provide talent development opportunities earlier rather than later:
 - Educational opportunities matters.
 - (Project Excite).
Some Best Practices con’t

• Grow your gifted populations beginning the in early primary grades with appropriate programming:
 • Provide enrichment to all students once a month for half a day (e.g., Friday afternoons) across a variety of domains (math, language arts, science).
 • Have teachers teach on their passions and hobbies.
• Collect data on student persistence, interest, creativity
 • Sparks children’s interest in learning.
 • Allows students to discover talents they may not have known about.
 • Provides robust data that can be used for later identification.

• Actively teach psychosocial skills:
 • Some problems have no correct answers.
 • Mindsets matter – practice and effort lead to benefits.
 • Dual identities are important.
Domain Comparisons

- US Pop
- Schl Pop
- GATE
- NBA
- NFL
- MLB

Categories:
- African Am
- Asian Am
- European Am
- Hispanic Am
Conclusions

- There is a lot of work to do to achieve our goal:
 - Work on the part of schools, teachers, students, and parents.
 - Expectations for rigor must be coupled with appropriate academic and socio-emotional supports.

- We are in a marathon, not the 100 meter dash:
 - The problem is big and solutions will take time.
 - Simplistic solutions will not work.

- We are preparing students for the future; it’s a marathon for them as well.

- We are working toward creating a critical mass of academic role models, much as we have a critical mass of role models in entertainment and athletics.
References

References con’t

Questions and Discussion?